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1 Introduction

In the original neoclassical model of economic growth due to Ramsey (1928)
and extended by Cass (1965) and Koopmans (1963), it is assumed that the
population grows at a constant rate n > 0. In discrete time it is natural to
define this growth rate as:

n— Liy1— Ly
Ly

where L; is the population level at period ¢, which implies that
Lt+1 = (]. -+ n) Lt.

Then, population grows exponentially, and for any initial population Lg, its
level at time ¢ is defined by:

Li=Lo(1+n).

This assumption is plausible only for small values of ¢ because growing ex-
ponentially, the population approaches infinity when ¢ goes to infinity, which
is clearly unrealistic. Verhulst (1838) considered that a stable population
would have a characteristic saturation level, which is usually called the car-
rying capacity of the environment.! To incorporate this upper bound on the
growth size, Verhulst introduced the logistic equation as an extension of the
exponential model (see Geritz and Kisdi, 2004). Moreover, as described in
Maynard (1974), a more realistic law of population growth should verify the
following properties:

1. when population is small enough in proportion to environmental carry-
ing capacity (denoted by L), then it grows at a constant rate n > 0,

2. when population is large enough in proportion to L., the economic re-
sources become more scarce which affects negatively population growth,

3. population growth rate is decreasing to 0.

In discrete time, the logistic equation due to Pielou et al.(1969) and the
Beverton-Holt equation (Beverton, 1957) are representative examples of pop-
ulation laws verifying these properties.

In this paper we extend the neoclassical economic growth model of Ram-
sey - Cass - Koopmans (hereafter the Ramsey model) in discrete time by
assuming that population growth follows the properties defined above. The
classic approach to study the Ramsey model is through the value function
and the Bellman equation (Lucas, Stokey, and Prescott, 1989). Since the

'In Maler, Perrings, and Pimentel (1995) the reader can find detailed information about
the concept of carrying capacity of human population.
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population growth rate in the extended version of the Ramsey model is ex-
ogenous and non-constant, it cannot be used a recursive method. Indeed, the
optimization problem is not equivalent to a single functional equation (the
Bellman equation). Thus, in this paper we explore a different approach to
solve the optimization problem that emerges in the Ramsey model. To the
best of our knowledge, this is the first paper that studies the Ramsey model
in discrete time and where population size tends to a finite saturation level
in the long-run. As we will note, all previous articles that analyze similar
problems, focus in the Ramsey model but in continuous time.

A handful other papers have extended some classic economic growth mod-
els by considering a population growth hypothesis different from the expo-
nential law. In the framework of the economic growth model due to Solow,
Accinelli and Brida (2007a), Brida (2008), Donghan (1998) study a gen-
eral model with a population growth rate that satisfies the previous prop-
erties. Brida and Pereyra (2008) solves the same problem but in discrete
time. Moreover, Brida and Maldonado (2010), Guerrini (2006), Guerrini
(2011), and Ferrara (2011b) find a closed-form solution for an economy with
a Cobb-Douglas production function, and study its properties.?

Regarding to the Ramsey model, Guerrini (2010c) analyzes a general
model with a bounded population growth rate in continuous time. Accinelli
and Brida (2007b) suppose a logistic population growth, and solve the model
with a general production function. Assuming a Cobb-Douglas production
function, Guerrini (2009) studies the case where the population follows a
logistic law, while Guerrini (2010a) and Guerrini (2010b) use the Von Berta-
lanffy population law.>

Finally, since the main question of the paper has been studied in contin-
uous time, it is worth noting that its extension to discrete time is innovative
and presents new difficulties. Indeed, the choice between discrete versus con-
tinuous time can affect dramatically the outcomes of a model and conclusions
that might draw from it, because dynamics of the two types of models can be
completely different and lead to different predictions.? In economic modeling
both types of timing are present and there does not exist a common view
between economists on which representation of time is better to model in eco-
nomics.® This gives as a first challenge the study of a discrete version of the
Ramsey model with decreasing population growth rate, since previous arti-
cles that study the same problem focus on the continuous version. Moreover,
when one changes a model from continuous to discrete time the complexity
of dynamics increases. Then, another challenge to study the discrete version
of the Ramsey model is technical: we have a different mathematical object

2See also Ferrara (2011c), Ferrara (2011a), Bay (2013), and Michetti (2013).

3See Guerrini (2010d), Guerrini (2010e), Ferrara and Guerrini (2009), and Ferrara and
Guerrini (2011) for other interesting cases.

4One of the main examples of a model that is rather different when we change timing
is the logistic population law.

5See Medio (1991) for a discussion of time dimension in economic models and references
therein.
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to study and then innovative techniques must be introduced.

2 The Ramsey model in discrete time

The standard version of the model considers an economy that produces a
unique good that can be consumed or used (along with homogeneous labour)
as capital in the production. The economy is endowed with a technology
defined by a production function F(K, L), where K is the capital stock and
L the level of population, with the following properties:

IF(K,L) dF(K,L) 8?F(K,L) 9*F(K,L)
o T>O’ 9L >0, IR2 <O, 912 < 0.
e F(K,0)=F(0,L)=0;VK,L € RT.

e F(AK,\L) = A\F(K,L);V\,K,L € R"(constant return to scale).

e lim 78F(5K’L> = lim 78F<8[Z’L) = +00.
K—0 L—0
o lim PRI _ iy OFUSL) — o (INADA conditions).

K—+oc0 L—+oc0

Production may be consumed or accumulated as capital for future pro-
duction:
F(Ky, L) =Ci + Ky — (1 - 0K, (1)

where § € (0,1) denotes the capital depreciation rate. F' can be expressed in
per capita terms as:

F(Ky, L) (K _
L0 _p (561

where g is the production function expressed in its intensive form, and
ky = IL(—: Since the number of workers equals the number of consumers and
has a growth rate of n, equation (1) can be rewritten as:

g(kt) = C¢ + k’t+1(1 =+ TZ) — (1 — 6)]%

Now, define f(k;) = g(ki) + (1 — 8)k;. Tt is straightforward to prove that
f has the following properties:

e f(0)=0
o f'(k)>0 Vk
o [(k)<0 Vk

e lim f/'(k) = o0
k—0
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The economy has a representative consumer with an utility function
u: Ry — R such that: u/ > 0 and u” < 0 (strictly increasing and strictly
concave). There is a social planner who decides, in each period, how to
divide the production between consumption and investment, such that the
population achieves the maximum utility level. Denote by § the representa-
tive consumer’s discount factor. Thus, the social planner faces the following
problem:

“+o0
Max > Blu(f(ke) — (1 +n)kis1)

s.t:
f(ke)

0<k <
SRS o)
With kg > 0 given.

The problem is usually solved by standard tools of dynamic programming.
In particular, the value function and the Bellman equation are employed
to show that there exists a unique solution to the problem that converges
monotonically to a value ko, defined by the equation f'(koo) = HT”.G We
finish this section with the following remark that compares the behavior of
the solutions of two economies that differ only in the rate of population
growth (we omit the proof since it is straightforward).

Remark 1. Consider an economy with a rate of population growth n°, and
another economy with the same fundamentals but with a rate of population
growth n', such that n* > n°. Denote by {k{}; and {k} }+ ({c{}; and {c}}+),
the optimal capital (consumption) sequences of each economy, and k%, k1
(c%, cL.), the optimal capital (consumption) value in the steady state of each
economy.

Then, there exists T such that kY > ki for all t > T, and k% > kl .

0 1 0 1
Moreover, c; > ¢; for all t > T, and co, > co.

The remark implies that an economy with a population growth rate lower
than other economy with the same fundamentals, has a higher capital level in
its steady state, and after some initial periods, the capital of the first economy
is higher than the capital of the second economy. Also, the long term per
capita consumption is higher in the economy with a rate of population growth
of ng than in the economy with 7.

3 The Ramsey model with decreasing popula-
tion growth rate

When the rate of population growth is not constant over time, the approach
of the Bellman equation cannot be applied. Also, the difference equation

6A detailed presentation of these results can be found in Lucas, Stokey, and Prescott,
(1989).
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that arises in the optimization problem is non autonomous, which prevents
the use of standard techniques. In this section, we follow the formulation of
Le Van and Dana (2003), and we extend their analysis to the case where the
population growth rate is not-constant and decreasing to zero. The last part
of this section, presents a closed-form solution of the model for the case of a
Cobb-Douglas production function and a logarithmic utility function.
Assume that the population evolves according to the following equation:

Lt = (1+m) Ly
where n; is the population growth rate, and satisfies:

0< 1 < TLt7Vt €N, limn; =0
t— 400

with Lo (given) the initial population level.
In this framework, the problem faced by the social planner is:

+oo
MELX Zﬁtu(f(kt) — (1 + nt)kt+1)
t=0

s.t:
f(ke)

1+7’Lt
0<ng1 <my

limn; =0
t—+oo

0< k1 <

with ng > 0 and kg > 0 given.

3.1 Existence of optimal paths and properties

First, we will show that problem (P) is equivalent to the maximization of a
continuous function defined on a compact set, and thus, the problem has a
solution.
Since:
lim f/ (k) =1—6 < 1, and lim f'(k) = +o0,
k—+o00 k—0
we know that there exists k > 0 such that f(k) = k, and f(k) > k Vk <

k and f(k) < k Vk > k. Moreover, it is easy to show that given a feasible
f (k)

sequence {k;}:, that is, a sequence such that 0 < k11 < T Vvt > 0 with
Uz
ko > 0, it holds that:

0 <k <max{ko,k} =X Vt>0

Also:
0< e < f(ke) < (V) Ve 20
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and since v is a continuous function, u is a bounded function in [0, f(A)].
Denote as (ko) the set of feasible sequences from ko.”
We know that if {k;}; € m(ko), then {k;}, € [0, \]™™. Since [0, \]"™ is
a compact set for the product topology defined in the space of sequences,
{k¢}i, m(ko) is included in a compact set. Moreover, as m(ko) is closed, it is
compact.

Lemma 1. w(ko) is a compact set for the product topology.

Proof. Let (ko, k7", k5, ....... , k™, ....) be a sequence of feasible sequences that

converges to (ko, k1, ko, . . . ,kt,....). By the definition of the product

topology we have: k" — kt Vt Since each sequence is feasible 0 < &}, <
m——+o0o

%Vt, and computing the limit when m — +o00: 0 < kyyq < {inf Thus,

7(ko) is closed. O

Define the function U : w(ko) — R such that: U(k) = U({ki}:) =
—+o00
%ﬁtu(f(kt) — (1 +ng)keg1)-
t=

Since u is bounded, U is well-defined. In particular, note that:

Zﬁt — (14 n¢)kis1) <Zﬂt )| = (()‘))‘

Lemma 2. U is a continuous function.

Proof. See Appendix for a proof. O

Thus, by the previous lemmas, (P) can be written as the problem of
finding the maximum of a continuous function defined in a compact set.

Proposition 1. (P) is equivalent to the following problem:

Maz U (k)
(P') ¢ sit:
ke 7T(k())

Moreover, (P) has a solution, that is, there exists k € m(ko) such that U (k) >
U(k) for all k € (ko).

The next proposition shows that (P) has a unique solution. Next, we
prove that all the elements of the optimal sequence are positive, and also
that the solution satisfies a version of the Euler equation adapted to our
framework.

Proposition 2. Given ko > 0, there exists a unique solution to (P) and a
unique optimal sequence of consumption.

"We will also called a sequence {ct}, feasible if c; = f(k¢) — (1 4+ n¢)key1 for some
feasible sequence {k¢}+.
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Proof. See Appendix for a proof. O

Proposition 3. The optimal sequence of capital and per capita consumption
verify that k; > 0 and ¢; > 0 for all t.

Proof. See Appendix for a proof. O
Proposition 4. If kg > 0 the optimal capital sequence satisfies the Fuler
equation:
u(f(ke) — (L ne)kee)  f'(kea)
Bu (f(kiyr) — (U nepn)kera)  L4my
Proof. See Appendix for a proof. O

The Euler equation implies that, in the optimal path, the relation between
the marginal utility of consumption in one period and the marginal utility of
consumption in the following period, should be equal to the rate under which
the economy transforms goods from one period to the following. Although
it is necessary, the Euler equation is not sufficient; in order a sequence to be
optimal it should verify an additional condition: the tranversality condition.
This result is known as the Mangasarian lemma.

Proposition 5. Let {ki}1—o be a feasible sequence that satisfies the Euler
equation and the following tranversality condition:

Tl_i}}rlooﬁTU'(f(kT) = (L +np)kri1)kria (1 +nr) =0

Then, the sequence is optimal for the problem (P).
Proof. See Appendix for a proof. O

3.2 A closed-form solution

To study the convergence of the optimal sequence we consider an economy
with a logarithmic utility function, and a Cobb-Douglas production function.
Thus, assume that:
u(cy) = log(ey)
f(ky) =k with a € (0,1)

The next theorem presents a closed-form solution of the problem (P). In
particular we will prove that the sequence {k:}i—o such that k11 = 1:{’2 -k
is the solution of problem (P) and converges.

Theorem 1. Consider the Ramsey model with a decreasing population growth
rate, a logarithmic utility function, and a Cobb-Douglas production function.
Then, the optimal capital sequence {ki}i=o is such that,

of

kiv1 = ———k Vi
t+1 1+nt t

and converges to koo = (aﬁ)ﬁ,
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Proof. The proof consists in showing that {k; };—¢ satisfies the Euler equation
and the Mangasarian lemma.

1. We will prove that the sequence {k;};—o satisfies the Euler equation.

Note that:
wie)  flher) = (L+ms)kes  f(ka) — afky,
w'(ce41) f(ke) = (1 + ne)kesa f(ke) — aBkg

Considering that f(k;) = k& we have,

flher1) — Bk, Kk — aBki Ok ( af ka)@ 1
= t

1+TLt E

flke) —apki kY —afky kP

which implies that:

Olﬂ “ ala—1) _ /8 O[ﬁ aya—1
(1+nt) kt 71+nta(1+’fl/tkt)

5 a—1 __ B /
1+nt04kt+1 = 71+ntf(kt+1)-

2. Compute:

Jlim BT (f(ke) = (14 np)kr) (L4 nr)krg =
al

1
lim 87—~ (1 P g
Talrfooﬂ ]f%(l — aﬁ)( + nT) 1+nrp T

lim ,BT of

=0
T—+oo 1 —af

since g € (0,1).
3. Finally, we will prove that the optimal sequence converges.
If ko = -2 k™ y k>0 then:

1+n¢
a a? ottt
af af af af ot
ke =(-—t ) () () kS
1 +’I”Lt_1 1 “Fnt_Q 1 —l—’rl,t_g 1 +TLO
/8 lliat’
k= (af) k'

(T +n—1) (14 m—2)*(1 +ng—2)?” (1 +ng)> "
Taking logs:

log(kt) = (i:f) log(aB) + a'log(ko)—

[log(1 +ny_1) + alog(l 4+ ng_2) + ..... + ' tlog(1 + ng))
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Define a; = log(1 +n—1) + alog(l +mg—2) + coveeeeee + ot~ tog(1 + no).
In the Appendix it is shown that a; converges to zero.

Given that log(k;) = (ﬂ:‘g og(aB) + atlog(ko) — as, and « € (0,1), we
have:

1
limlog(k;) =
tﬁ+o§( t) l-a

log(a3)
Thus, {k:}: converges to koo = (a,@)ﬁ, which is the same value that
it is found in the original Ramsey model with n = 0. O

Remark 2. The closed-form solution that we found implies directly the fol-
lowing results.

1. If ko < ks, the optimal capital sequence is increasing.

2. If ko > koo, there are some values of the parameters of the model such
that the optimal capital sequence is not monotone. In particular, if
ko = ko, the optimal sequence decreases during the initial periods, and
then increases. This result contrasts with the conclusion in the classic
model where the optimal sequence is monotone for all possible values of
the parameters.

3. Let {ki}; be the optimal capital sequence of an economy with a rate
of population growth defined by {n{}:, and {kf}; the optimal capital
sequence in other economy with a rate of population growth defined by
{n2};. If n; < n? for each ¢, then k} > k? for each ¢. Thus, an economy
with a rate of population growth smaller in each period than other, has
in each period a higher capital level (in per capita terms).

4. The solution of the model with initial condition kg is asymptotically
stable, which implies that small variations of the initial capital do not
have large impacts on the economic growth process.

5. Finally, note that the general solution does not depend on the particular
form of {n;};.

4 Conclusions

In growth theory it is usually assumed that population growth follows an
exponential law. This is clearly unrealistic because, in particular, it implies
that population goes to infinity when time goes to infinity. In this paper
we suggest a more realistic approach by considering in the framework of
the Ramsey model that population is strictly increasing and bounded, and
that its rate of growth is strictly decreasing to zero. In the extended model,
the classic approach that uses the Bellman equation does not apply, and we
introduce other tools to study the model.

The paper shows that there exists a unique solution of the model that
satisfies the Euler equation. Moreover, if the utility is logarithmic and the
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production function is Cobb-Douglas, the optimal sequence converges to
koo = (aﬁ)ﬁ, and then it depends only on the technology f, the rate
of capital depreciation §, the discount factor § and thus, the intrinsic rate of
population growth n; plays no role in determining the long run level of per
capita output.

When the initial capital level is lower than its level in the steady state,
the optimal capital sequence is increasing, as in the original model. However,
there are some values of the initial capital level such that the sequence is not
monotone, and in particular, there is no constant solution to the maximiza-
tion problem.

Many open questions remain after our analysis. First, the same analysis
conducted to obtain a closed-form solution may be redone but considering
other utility and production functions, and then, the new results may be
compared with those obtained in this paper. Second, it would be interesting
to consider a particular law for the population growth, for instance, the
Beverton-Holt equation. In this case, the problem will involve an autonomous
difference equation, and then classic approaches can be applied. Third, as a
future research, the behavior of optimal sequences for different values of the
parameters of the model may be studied, this analysis will complement the
main findings of this paper. Finally, if it is assumed that n;y; < ny,Vt > 0
and tlzinoc n(t) =n > 0, the same results with suitable modifications may be

obtained. But this is material of future research.
5 Appendix

5.1 Proof of Lemma 2

Let (ko, k7™, k5", ..., k", ...) be a sequence of feasible sequences that con-
verges to (ko, k1, ka2, ..., kt,...). Then we have:

U(E™) = U(k)| <

+oo
Zﬁt |u(f(ke) = (1 + ne)kea) — (u(f (k) — (1+ n)kft))|

Let € > 0. We know that U (k™) and U(k) converge, then there exists T'
such that for all m:

0< iﬂtu(f(kt) — (1 +n)ky1) < §
t=
0< ;f);ﬁtu(f(kl") — (k) < &

Thus,
[U(E™) = U(k)| <
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Zﬂt |u (1 +n)keyr — (u(f(kf") — (1 + nt)kﬁlﬂ + %6

Smce w and f are continuous functions, and k}" _~>r ki, there exists N
m——+00
such that for all m > N:
Zﬁt lu(f( (1+ )k —u(f (k) — L+ n)ky)| <

Thus for all m > N, |U(k™) — U(k)| < €, which implies that U is contin-
uous.

5.2 Proof of Proposition 2

Proof. Suppose there exist two different optimal solutions k! and k2, and let
¢!, ¢® be the associated consumption sequences. Thus for all ¢ we have:

e + (L +n)kiyy = fky)
¢t + (Lt m)ktey = f(K7)
It must exist ¢ such that ¢} # ¢? (otherwise, k! = k?).

Let A € (0,1), for all ¢ we have that:

Acp + (1= N)ei + AL+ nkpyy + (1= N1+ )k, =
A (k) + (1= N f (kD)
and since f is concave Af(k}) 4+ (1 — N)f(k?) < f(Akf + (1 — N)k?)
Note that:
(k) FRY) _ FONk A+ (1= Nk?)
< Ak} < - < .
0< M+ (LR <A (1) R < o
Then, {Xk{ + (1 = \)kF},_, is a feasible sequence from ko.

Consider 5 Bu(f(Mk} + (1= M) — (1 + m)(Nkby + (1= Ak2)) 2
t=0

+zojoﬂtu()\c% + (1= XN)e?) > +zojoﬁt()\u(c%) + (1 = Nu(c?)), since u is concave
;?121 increasing =

Z,@t()\u(ct) (1= Nu(e?)) = :f:;ﬁtu(c%), since {c}}; is an optimal se-
quetice.

Since there exists ¢ such that ¢ # ¢, u(Aef + (1 —N)c?) > Au(cf) + (1 —
Au(c?).

Then, 32 5 (u(e}) + (1= Au(dh)) > A% B'ulel) + (1= ) 3 B'ulel) =

t=0
+oo
3 Bru(e).
t=0

Finally, we have that {c} }; is not an optimal sequence, which is a contra-
diction. O



Ramsey Model with Bounded Population 13

5.3 Proof of Proposition 3

Proof. Since ko > 0, the sequence with all its elements equal zero is not
optimal, then there exists ¢, such that ¢; > 0. For the sake of simplicity,
assume that ¢ = 0 and ¢; > 0. Then, (1 +ng)k; = f(ko), c1 + (1 +nq)ks =
f(ky). Since ko > 0, ki = 1) > ¢

Let € > 0 such that k; — e > 0 and f(k; —€) — (1 +ng)k2 > 0.8

Define the following sequence:

et =¢,

i = flk1 =€) = (1 +n1)ks,

and V¢t >2 ¢} =c¢; and k} = k. The sequences c; and k} are feasible
from ko.

Let compute Ae = :i:::ﬁtu(ctl) - jg:ﬁtu(ct) = u(cd) + Bu(cl) — (u(co) +
Bu(e1)) = ulcg) —uleo) + Bulei) — Buler) = u(ch) —ulco) +B(ulc) — Buler))-

Since u is a concave function, we have:
w'(e)(x —€) +ule) > u(x) Vo > 0,V then u/(e)(x — €) > u(x) — u(e)
and taking x = O:

u'(€)e < ule)

which implies:

{ u(eg) — ulco) = '(cf)(ch — o) = u'(cp)e
u(c )

1) —uler) = w'(ei)(er —er) = w/(e})(f(kr — €) — f (k1))

Then,
Ae > w(eb)e + B [ (e £k — ) — F(k)]
= | wted) + sutey [ =)
Given that:
W(ch) 0 (w(0)=to0)
and o

U/(C%)(f(kl - 6) — f(kl)) o ’U/(C%)f/(kl) > —00

€ e—0

For e small enough we have: Ae > 0, which means that the total utility
(in present value) is higher when ¢} = € than when ¢y = 0. Then, ¢y > 0.

Now, we will prove that k; > 0. By way of contradiction, suppose k; = 0.
Since it must hold that 0 < ko < ﬁkﬁl) =0, we have k3 = 0, and by induction:
ki =0and ¢, =0Vt > 1.

8Such e exists since k1 > 0 and ¢; = f(k1 —€) — (1 +ng)ka >0
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As before, define the sequences ¢! and k' by:

€
1+n0

b =co— €kt =

Since ¢ > 0, there exists € such that ¢ — e > 0.
Then, c} = f( )and Vt > 2 ¢f = ¢; and k! = k;.
Thus,

€
1+no

+oo +oo
Ae =) Blule) =Y _Bulcy) = uleo) — ulep) + 8 [u(er) — ulc})] =

€
14+ no

u'(co — €)(—€) + Bu' (f( NS ) =

€
1+mng
ﬂu (fFS D (55)

€

—u'(co —€)

Given that 11m v ) (teg)
€

00. Then Ae > 0 for € > 0 small enough, which implies k1 > 0.

Then, if ¢g > 0 it holds that k; > 0. Since k; > 0, by the same reasoning
it can be shown that ¢; > 0, and if ¢; > 0, then ks > 0. Finally, by induction
¢t > 0 and k; > 0 Vt. 0

= +oo and hmou (co—¢) =u(c) <

5.4 Proof of Proposition 4

Proof. From previous results we know that an optimal sequence satisfies:

f (k) V¢ >0

0< kiyq <
t+1 1+nt =

and
Cy > 07 k)t > OVt

Let consider the sequence k' defined by:
kp =k, kb =y VT =t+1
with y defined in an open neighborhood of k;41 such that:

{ 0 <y(l+mny) < flke)
0 < kpra(l 4+ ney1) < f(y)

this means that k! is feasible from k.
Given that k is optimal, it holds that

U(k) > U(kY),
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which implies that
u(f(ke) = (1 + ma)ker) + Bu(f (k1) — (14 nes1) ki) =

> u(f(ke) = y(1+m)) + Bulf(y) — (1 +nug1)kes2)

This inequality holds for all y in an open neighborhood of k.1, and thus the
function

o(y) = u(f (k) — y(1 +ne)) + Bu(f(y) — (L + mgi1)kii2)

has a local minimum at k;11. Thus, ¢'(k¢+1) = 0.
But,

& (kes1) = 0/ (f (ke) — (L + 1) ke) (= (1 +ne)) + Bu' (f (ki) —
(L4 1p1)key) f(key1) =0
Which implies that:

u(f(ke) — (L+ne)kee)  f(kea)

B/ (f(ke1) = (1 +mug1)ke2)  1+me

5.5 Proof of Proposition 5

Let {k;}1=0 be a feasible sequence that satisfies the Euler equation and
{k}}1—o other feasible sequence.

Define:
T T
AT = Zﬁtu(f(kt) = (L4 n)kes1) — Z,Btu(f(kg) — (1 +me)kyiq)
t=0 t=0
Compute:

AT = u(f (ko) = (1+n0)k1) —u(f (ko) = (L+n0)k1) +Blu(f (k1) — (1+n1)ka)—
WK = (1 m)d) o+ ..
+67 [u(f (k) = (14 nr)kr i) = u(f(kp) = (1+ nr)kpiy)]
u is concave, so it holds that:®
u(f(ko) = (14 m0)k1) — u(f(ko) — (1 +mn1)ky) >

W' (f (ko) — (14 70)k1)(1 + no)(k — k1)

9Note that if u is concave and differentiable, then: u(z) < u(a) + v/(a)(z — a) and
u(a) — u(z) > u'(a)(a — ) for all a and z in the domain of w.
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and by the Euler equation:
u(f(ko) = (L +no)ky) — u(f (ko) — (1 +mne)ki) >

B (k)w! (f(ky — (1 +na)k2)(kj — k1)
Thus,
AT > B (ko) (f (k1) — (14 na) ko) (ki — K1)+

Blulf (k1) = (1 +m)ka) — u(f(k]) — (1 +ma)k3) + ...+
BTTu(f(kr) = (1 + nr)kria) = u(f(kp) = (1 +nr)kp )]
Once again, given that u is concave:
u(f (k) = (1 +na)ka) = u(f (ki) = (1+m)ky) >
w(f(ki) = (1+na)ko)[f (k1) — f(RD) + (1 +na) (k3 — k2)]

Now, by the concavity of f, we know:
f(ky) = f(kD) > f'(k1) (k1 — ki),
and then:
u(f (k1) = (1+m1)ks) — u(f(k{) = (1 +m1)ky) >
W (f(k1) = (1+n0)k)[f (k1) (ky = k1) + (14 n0) (ks — ko)
Therefore:
AT > fu' (f (k1) = (1 +7n1)ka) f' (k1) (k. — ki) +
Bu' (f (k) = (14 n1)ko) f/ (k1) (ky — ki) +
Bu' (f (k1) = (1 +7n1)k2) (1 +n)(ky — ko) +
B2[u(f (k2) = (1 + na)ks) — u(f(k3) — (1 + na)k3)]+
A+ BT [u(f (k) = (U4 np)krr) — u(f (kp) — (1 +np)kpq)]

Note that the first two term of the sum canceled out, and repeating the
procedure we obtain:

AT > BT/ (f(kr — (1 + np)kria) (L + nr)(kp oy — krga) >

=BT (f(kr — (14 n7)krs1) (1 + nr)krp
Computing the limit with T — +oc0, we have that AT > 0, which implies
that:

Zﬂt (1 +ne)kes1) > Zﬁt = (L4 n)kiy)
t=0
Then, the present value of the utility is higher when the sequence is {k¢}+—0
than when we consider other feasible sequence. This implies that the sequence
is optimal.
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5.6 Proof of Theorem 1
Proof. We will prove that

a; = log(1 +ny_1) + alog(l +ng_2) + ... +a'tlog(1 + no)

converges.
First, it is straightforward to show that:

ai+1 — aay = log(1l + ny)

We have that n; > ny1, for all ¢, thus: log(1 + ng) > log(1 + nyq1), Ve,
which means that {log(1 + n)}+—o is decreasing, and so it is the sequence
{at41 — aat }1—o. Then {ai+1 — aay bi—o satisfies that:

g1 — Qay < G — QG-

ary1 — o < oar — 1)
But, a; — aa;—1 < a;—1 — aay—o implies that a; —a;—1 < a(a;—1 —a;—2); then
by induction:
a1 — ar < (a1 — ao)
1. If a1<ap then a; — ap<0 and a;11 — a;<0 since a € (0,1). This means

that: {a;}t—o is decreasing and it is bounded from below since a; =
log(1+ns_1)+alog(l+ns o) +-+a’~tog(1+mng) > 0; thus it converges.
2. If for some T € N it holds that: ar < ar_1, then: a; < a;_1 for all
t > T. Thus, the sequence converges.
3. Finally, we will show that {a¢};—o cannot be an increasing sequence.
Assume, by contradiction, that it is increasing.
If a1>a9 = log(1 + ng), that means:

a1 = alog(1 + ng) + log(1 + nq)>log(1 +ng) = ao

log(1 + n4)
log(1 4 no)
If as>ayq, then: as = log(1 + n2) + aa;>a; and
log(1 4+ n2)>(1 — a)a;>(1 — a)ag = (1 — a)log(1 + ny).
Then, 1604720 5 (1 _ 4, and by induction, if {a;}+—o is increasing, we

' log(14+n0)
have for all ¢

-«

log(1 + ny)

—>1 - a>0
log(1 + no)

But, log(1+ne) _y 0 when ¢ — oo, which is a contradiction. Therefore,
log(1+4no)

{a;}¢=o is not increasing.

Finally, since a;4+1 — aa; = log(1 + n;), by taking limit, it can be shown
that a; tends to 0.
O
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